

## SYNTHESIS AND SPECTRA OF 3-(3,5-DIMETHYL-2-FUROYL)-4-ARYL-5-CARBETHOXY- $\Delta^2$ -PYRAZOLINES

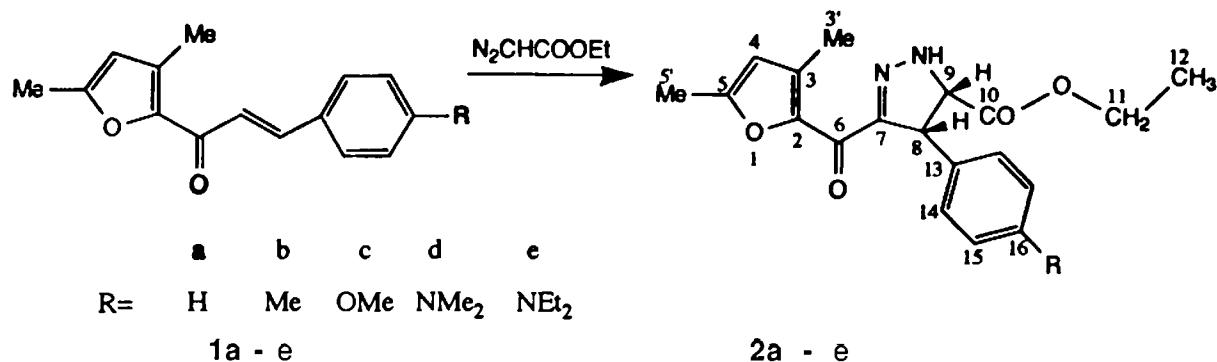
Keriman Gunaydin,<sup>a</sup> Olçay Anaç,<sup>a</sup> Ursula Lucia Bologa,<sup>b</sup> and Alexandru T. Balaban \*<sup>b</sup>

<sup>a</sup> Department of Organic Chemistry, Technical University, Istanbul, Turkey.

<sup>b</sup> Department of Organic Chemistry, Polytechnic University, Splaiul Independentei 313, 77206 Bucharest, Roumania.

**Abstract :** 3-(3,5-Dimethyl-2-furoyl)-4-aryl-5-carbethoxy- $\Delta^2$ -pyrazolines **2a-e** have been synthetized by the dipolar cycloaddition of 3,5-dimethyl-2-furoyl *para*-substituted-styryl ketones and ethyl diazoacetate. Their structure was determined by UV, IR, <sup>1</sup>H- and <sup>13</sup>C-NMR spectroscopy ; only one racemic diastereomer (*cis* - H-8, H-9) was determined using homonuclear proton-proton n.O.e. experiments.

### Introduction


2,4,6-Trialkylpyrylium salts which are easily available from the diacylation of alkenes (1,2) undergo an oxidative ring contraction (3,4) under the action of hydrogen peroxide when 2-acyl-3,5-dialkylfurans are formed. the condensation of these furanic derivatives with substituted aromatic aldehydes leads to substituted 3,5-dialkyl-2-furyl styryl ketones **1** (5) which are interesting starting materials for the synthesis of other heterocyclic compounds. The above  $\alpha,\beta$ -unsaturated ketones react with phenylhydrazine when 3-(3,5-dialkylfuryl)-1-phenyl-5-aryl- $\Delta^2$ -pyrazolines are obtained (6) ; the condensation with ethyl cyanoacetate leads to 4-aryl-3-cyano-6-(2-furyl)-2-pyridones (7).

The present paper reports the preparation of 3-(3,5-dimethyl-2-furoyl)-4-aryl-5-carbethoxy- $\Delta^2$ -pyrazolines **2** starting from the furyl styryl ketones **1** and ethyl diazoacetate. The structure of the title compounds **2a-e** was determined by UV, IR,  $^1\text{H}$ - and  $^{13}\text{C}$ -NMR spectroscopy and by mass spectra.

The synthesis and properties of pyrazolines were reviewed by Coispeau and Elguero (8), as well as by El-Rayyes et al. (9). An extensive stereochemical structural analysis was carried out by Tóth and Lévai (10) using  $^1\text{H}$ - and  $^{13}\text{C}$ -NMR spectroscopy. The use of pyrazolines as optical brightening agents was reviewed by Wagner et al. (11).

### Synthesis and optical spectra

The furyl analogues of chalcone **1 a-e** were refluxed with the four-fold molar amount of ethyl diazoacetate in chloroform for various time periods depending on the nature of the R group. The unreacted ketone was separated from the product by preparative TLC chromatography using  $\text{CHCl}_3$  (for **2a, d, e**) or  $\text{CHCl}_3 + \text{iPrOH}$  (20 : 1) for **2e** ( $R_f$  for **2a** : 0.615, **2b** : 0.625, **2c** : 0.560, **2d** : 0.532, **2e** : 0.462). A further purification was carried out by recrystallization when yellow crystalline compounds were obtained. Yields varied from 45 to 95 % (Table 1). In the UV spectra recorded in ethanol a characteristic band at 290-295 nm was observed.



The IR spectra recorded in KBr pellets showed for all compounds a strong sharp band at  $3300-3340\text{ cm}^{-1}$  due to N-H stretching. Thus, a cyclic azo tautomer **3** is ruled out. The carbonyl frequency appeared at about  $1650\text{ cm}^{-1}$  and the carbethoxy group gave rise to a strong band at  $1722-1730\text{ cm}^{-1}$ .

Table 1. Physical constants and spectral data of compounds 2a - e

| Compound | R                | Yield (%) | M.P.(°C)           | Parent peak | IR (KBr, cm <sup>-1</sup> )<br>$\nu_{\text{co}}$ | IR (KBr, cm <sup>-1</sup> )<br>$\nu_{\text{coo}}$ |
|----------|------------------|-----------|--------------------|-------------|--------------------------------------------------|---------------------------------------------------|
| 2a       | H                | 94.2      | 122 <sup>a</sup>   | 340         | 1622                                             | 1700                                              |
| 2b       | Me               | 73.2      | 120-2 <sup>b</sup> | 354         | 1640                                             | 1730                                              |
| 2c       | OMe              | 67.2      | 115-6 <sup>a</sup> | 370         | 1650                                             | 1724                                              |
| 2d       | NMe <sub>2</sub> | 45.3      | 175-6 <sup>a</sup> | 383         | 1640                                             | 1722                                              |
| 2e       | NET <sub>2</sub> | 51.4      | 151-2 <sup>a</sup> | c           | 1660                                             | 1722                                              |

<sup>a</sup> Recrystallization from CCl<sub>4</sub>; <sup>b</sup> Recrystallization from ethanol; <sup>c</sup> Not recorded.

### <sup>1</sup>H-NMR Spectra

All <sup>1</sup>H-NMR spectra were recorded in CDCl<sub>3</sub>. The chemical shifts are presented in Table 2. The assignments agree with the data for the furyl styryl ketones published earlier (5). Thus, the H-4 furanic proton in the title compounds appears as a singlet at 6.08-6.12 ppm as in the furanic analogues of chalcone 1. The broad singlet at 6.86-6.96 ppm is assigned to the nitrogen-bonded proton which undergoes exchange with D<sub>2</sub>O. The <sup>1</sup>H-NMR spectra show that only one tautomer 2 with two adjacent CH groups was obtained, another one (structure 3) is ruled out. The two protons connected with the two C(sp<sup>3</sup>) atoms of the pyrazoline ring (H-8 and H-9, respectively) appear as doublets having a coupling constant *J* of 3.7 - 4.3 Hz.

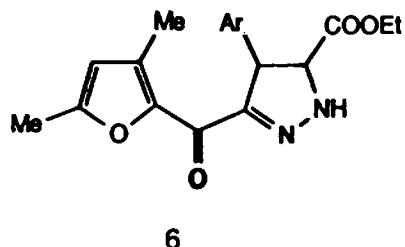
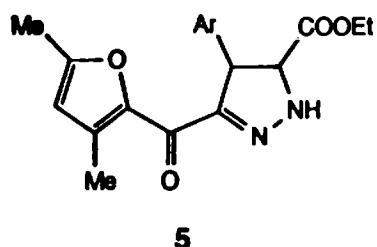
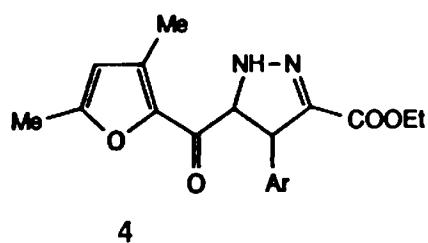
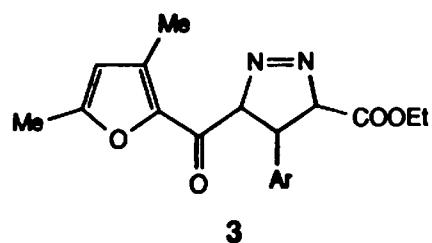






Table 2.  $^1\text{H}$ -NMR chemical shifts ( $\delta_{\text{TMS}} = 0.00$  ppm) and coupling constants  $J$  (Hz) of compounds **2a-e** in  $\text{CDCl}_3$ .

| $\delta$ and $J$    | <b>2 a</b><br>R = H | <b>2 b</b><br>Me | <b>2c</b><br>OMe | <b>2 d</b><br>NMe <sub>2</sub> | <b>2 e</b><br>NEt <sub>2</sub> |
|---------------------|---------------------|------------------|------------------|--------------------------------|--------------------------------|
| H - 3'              | 2.30                | 2.31             | 2.32             | 2.32                           | 2.33                           |
| H - 4               | 6.08                | 6.08             | 6.12             | 6.09                           | 6.09                           |
| H - 5'              | 2.35                | 2.36             | 2.36             | 2.35                           | 2.36                           |
| H - N               | 6.95                | 6.99             | 6.92             | 6.88                           | 6.86                           |
| H - 8               | 4.59                | 4.55             | 4.60             | 4.55                           | 4.54                           |
| H - 9               | 4.88                | 4.84             | 4.89             | 4.87                           | 4.87                           |
| H - 11              | 4.10                | 4.10             | 4.00             | 4.12                           | a                              |
| H' -11              | 4.17                | 4.17             | 4.17             | 4.18                           | 4.17                           |
| H - 12              | 1.21                | 1.24             | 1.24             | 1.24                           | 1.23                           |
| H - 14              | 7.30                | 7.19             | 6.90             | 7.19                           | 7.14                           |
| H - 15              | 7.30                | 7.13             | 7.25             | 6.69                           | 6.62                           |
| H <sup>R</sup>      | 7.30                | 2.34             | 3.84             | 2.94                           | 1.15                           |
|                     |                     |                  |                  |                                | 3.34                           |
| $J_{8,9}$           | 4.26                | 4.05             | 3.90             | 3.70                           | 3.70                           |
| $J_{11\text{ gem}}$ | 11.2                | -                | -                | -                              | -                              |
| $J_{11-12}$         | 7.14                | 7.32             | 7.20             | 7.14                           | 7.14                           |
| $J_{14-15}$         | -                   | 8.07             | 8.64             | 8.90                           | 8.90                           |

<sup>a</sup> Unresolved multiplet.

The fact that these are the *cis* isomers can be determined only tentatively from the magnitude of this coupling constant ; hence homonuclear proton-proton n.O.e. difference spectroscopy for neighboring protons H-8 and H-9 was carried out. The irradiation of H-8 in **2c** causes a large enhancement in the intensity of H-9, a small enhancement of the pair of equivalent H-14 protons in the aromatic ring, and a sizeable enhancement of the two furanic methyl peaks. It can be concluded unambiguously that the H-8 and H-9 protons are *cis* to each other, and that structure **4** is ruled out. From the four possible rotamers of the racemic *cis*-configuration only structures **5** and **6** exist in the ground state.

The methylene group in the ethyl substituent appears as an  $ABX_3$  multiplet with 18 lines because its hydrogens are diastereotopic since the molecule has chiral centers ; its coupling constants are 7 Hz for the ethyl coupling and about 11 Hz for the geminal coupling.

### $^{13}\text{C}$ -NMR Spectra

$^{13}\text{C}$ -NMR Spectra were recorded in  $\text{CDCl}_3$ . The assignments for the chemical shifts (Table 3) were made using 2D  $^1\text{H}$  -  $^{13}\text{C}$  correlation maps and a.p.t. spectra. Results are in good agreement with literature data (5, 10a).

Table 3.  $^{13}\text{C}$ -NMR chemical shifts ( $\delta_{\text{TMS}} = 0.00$  ppm) of compounds **2a-e** in  $\text{CDCl}_3$ .

| Comp. | <b>2a</b> | <b>2b</b> | <b>2c</b> | <b>2d</b>        | <b>2e</b>        |
|-------|-----------|-----------|-----------|------------------|------------------|
| R =   | H         | Me        | OMe       | NMe <sub>2</sub> | NEt <sub>2</sub> |
| C- 2  | 156.30    | 156.22    | 156.80    | 156.67           | 156.67           |
| C- 3  | 135.36    | 135.33    | 135.86    | 135.62           | 135.59           |
| C- 3' | 11.65     | 11.67     | 11.83     | 11.79            | 11.84            |
| C- 4  | 113.12    | 113.09    | 113.33    | 113.20           | 113.24           |
| C- 5  | 145.55    | a         | a         | 145.50           | 146.33           |
| C- 5  | 13.81     | 13.81     | 14.11     | 13.99            | 14.04            |
| C- 6  | 184.64    | 184.83    | 185.15    | 185.52           | 185.66           |
| C- 7  | 145.10    | 145.95    | 146.28    | 146.67           | 146.84           |
| C- 8  | 53.80     | 53.54     | 53.24     | 53.24            | 53.26            |
| C- 9  | 73.86     | 73.89     | 73.97     | 74.04            | 74.17            |
| C-10  | 161.26    | 161.23    | 161.70    | 161.46           | 161.89           |
| C-11  | 60.70     | 60.77     | 61.12     | 61.02            | 61.04            |
| C-12  | 14.01     | 14.61     | 14.01     | 14.10            | 14.15            |
| C-13  | 140.03    | a         | 132.06    | a                | 135.59           |
| C-14  | 127.38    | 129.45    | 128.55    | 128.16           | 128.39           |
| C-15  | 128.72    | 127.27    | 114.27    | 112.82           | 112.02           |
| C-16  | 127.38    | 136.89    | 159.03    | 149.98           | 147.30           |
| C- R  | -         | 21.07     | 55.26     | 40.55            | 44.35            |
|       |           |           |           |                  | 12.64            |

<sup>a</sup> Not detected.

### Mass spectra

In the electron-impact mass spectra of compounds **2a** and **2d**, the parent peak has low intensity (5.3 and 19.4 %, respectively). The base peak is the 4-aryl-5-ethoxypyrazolyl radical-ion resulted from the loss of carbon dioxide from the ester group and of a 3,5-dimethyl-2-furoyl radical ; the later radical-ion appears at  $m/z = 123$  with an intensity of 68.2 and 52.5 %, respectively. The direct fragmentation affording the latter radical leaves a 4-aryl-5-carboxethylpyrazolyl radical-ion whose intensity is 62.3 and 39.0 %, respectively.

### Experimental Part

Melting points were determined on a Boetius hot plate and are uncorrected. IR spectra were recorded with a FT-IR 5300 JASCO apparatus ;  $^1\text{H}$ - and  $^{13}\text{C}$ -NMR spectra were recorded with 300 MHz Varian spectrometer.

Ethyl diazoacetate was prepared according to literature data (11).

### Preparation of Pyrazolines **2a-e**.

#### General Procedure

Furyl styryl ketones **1** (5 mmoles) were refluxed with 20 mmoles ethyl diazoacetate in chloroform for 24 hours (compounds **2a** and **2b**) and three weeks (compounds **2c-e**). The reaction mixture was analyzed by TLC. After the removal of the solvent the oily mixture was separated by preparative TLC using either  $\text{CHCl}_3$  (for **2a**, **b**, **d**, **e**) or  $\text{CHCl}_3 + \text{iPrOH}$  (20 : 1) for **2c**.

$R_f$  values are : **2a** : 0.615, **2b** : 0.625, **2c** : 0.560, **2d** : 0.532, **2e** : 0.463.

Physical constants, analytical, IR and mass spectroscopic data are presented in Table 1.

### Acknowledgements

Thanks are addressed to Mr. I. Ghiviriga and Mr. C. Deleanu from the Institute of Organic Chemistry of the Roumanian Academy, Bucharest for recording and assigning NMR spectra.

## References

- (1) A. T. Balaban and C. D. Nenitzescu, *Org. Synth. Coll. Vol. 5*, 1106 (1973) ; *Liebigs Ann. Chem.*, 625, 74 (1956)
- (2) A. T. Balaban, A. Dinculescu, D. N. Dorofenko, G. W. Fischer, A. V. Koblik, V. V. Mezheritskii and W. Schroth, *Pyrylium Salts. Synthesis, Reactions and Physical Properties, Advances in Heterocyclic Chemistry, Suppl. Vol. 2* (A. R. Katritzky, Ed.), Academic Press, New York, 1981
- (3) A. T. Balaban and C. D. Nenitzescu, *Chem. Ber.*, 93, 599 (1960) ; A. T. Balaban, *Org. Prep. Proc.* 1, 65 (1969)
- (4) A. T. Balaban, M. D. Gheorghiu and C. Draghici, *Israel J. Chem.*, 20, 168 (1980)
- (5) U. Bologa, A. Schiketanz, C. Musat, D. Vilcica, C. Draghici, M. D. Gheorghiu and A. T. Balaban, *Rev. Roum. Chim.*, 34, 1131 (1989)
- (6) U. Bologa, C. Musat, M. D. Gheorghiu, I. Ghiviriga and A. T. Balaban (in press)
- (7) M. C. Balaban, T. S. Balaban, U. Bologa and A. T. Balaban, *Rev. Roum. Chim.*, 35, 1005 (1990)
- (8) G. Coispeau and J. Elguero, *Bull. Soc. Chem. Fr.*, 2717 (1970)
- (9) N. R. El-Rayyes and N. A. Al-Awadi, *Synthesis*, 1028 (1985)
- (10) a) G. Toth and A. Szöllösy, *J. Chem. Soc. Perkin Trans. II*, 319 (1989) ; b) A. L. Tokes, A. Szöllösy, G. Toth and A. Lévai, *Acta Chim. Hung.*, 112, 335 (1983) ; c) A. Lévai, A. Szöllösy and G. Toth, *J. Chem. Res. (S)*, 392 (1985)
- (11) A. Wagner, C. W. Schellhammer and S. Petersen, *Angew. Chem. Internat. Ed. Engl.*, 5, 699 (1966)
- (12) N. K. Sangwan, *J. Chem. Res. (S)*, 22 (1987)
- (13) J. K. M. Saunders and J. D. Mersh, *Prog. Nucl. Magn. Reson. Spectrosc.*, 15, 353 (1982)
- (14) H. Friebolin, *Basic One- and Two-Dimensional NMR Spectroscopy*, VCH-Verlag, Weinheim, 1991
- (15) M. Regitz, J. Hocker and A. Liedhegener, *Org. Prep. Proc.* 1, 99 (1969)

Received January 5, 1994

